D-(-)-酒石酸

  • AR
  • ≥99%
有货

库存信息

关闭

库存信息

关闭

库存信息

关闭
货号 (SKU) 包装规格 是否现货 价格 数量
T107140-100g
100g 现货 Stock Image
T107140-500g
500g 现货 Stock Image
T107140-2.5kg
2.5kg 现货 Stock Image

基本描述

别名 D-酒石酸
英文别名 (2R/S,3R/S)-dihydroxy-1,4-butanedioic acid | AM20080237 | DL-Tartaric acid, >=99% | s3134 | (S,S)-Tartaric acid;Tartaric acid;D-(-)-Tartaric acid | Butanedioic acid, 2,3-dihydroxy-, (S-(R*,R*))- | (2s, 3s)-tartaric acid | Acetamide, N-(5,6,7,8-tetrahydro-
规格或纯度 AR, ≥99%
英文名称 D-(-)-Tartaric acid
运输条件 常规运输
产品介绍

有二个不对称碳原子,有四种立体异构体,即:右旋型(D型, L型)、左旋型(L型,D型)、内消旋型、外消旋型。通常,外消旋型酒石酸又称为葡萄酸。右旋型酒石酸以游离的或K盐、Ca盐、Mg盐的形态广泛分布于高等植物中,特别是多存在于果实和叶中。。等量右旋体和左旋体的混合物的旋光性相互抵消,称为外消旋酒石酸。内消旋体不存在于自然界中,可由化学合成。各种酒石酸都是易溶于水的无色结晶。水中溶解度: 1394 g/L (20℃)。 酒石酸广泛用作饮料和其他食品的酸化剂,这一用途与柠檬酸类似。酒石酸与单宁合用,可作为酸性染料的媒染剂,也用于照相行业的某些显影和定影操作,其铁盐具有光敏性,因此可用于制作蓝图。酒石酸能与多种金属离子络合,可作金属表面的清洗剂和抛光剂。酒石酸钾钠(罗谢尔盐)可配制费林试剂,还可用于医药作为缓泻剂和利尿剂,还用作辛可芬的中间体。其晶体有压电性质,可用于电子工业。

D-(-)-Tartaric acid is a polyhydroxy acid. Oxidation of d-tartaric acid has been reported.Crystal structure of D-(-)-tartaric acid has been studied by X-ray and neutron diffraction.Tartaric acid is reported to be one of the constituents of soy bean Lipositol.Tartaric acid assists in the generation Y2O3:Eu3+ nanoparticles by solgel method.Tartaric acid is the main acid present in grapes and red wine.
D-(-)-Tartaric acid may be used in the synthesis of the HIV-protease inhibitor nelfinavir.It may be used in the synthesis of chiral aziridine derivative, a common intermediate for the synthesis of hydroxyethylamine class HIV protease inhibitors such as saquinavir, amprenavir, or nelfinavir.

AI解读

关联靶点(人)

TSHR Tclin Thyroid stimulating hormone receptor (29986 活性数据)
活性类型 Relation Activity value Units Action Type Journal PubMed Id doi Assay Aladdin ID
CYP2D6 Tclin Cytochrome P450 2D6 (33882 活性数据)
活性类型 Relation Activity value Units Action Type Journal PubMed Id doi Assay Aladdin ID
CYP1A2 Tchem Cytochrome P450 1A2 (26471 活性数据)
活性类型 Relation Activity value Units Action Type Journal PubMed Id doi Assay Aladdin ID
CYP2C9 Tchem Cytochrome P450 2C9 (32119 活性数据)
活性类型 Relation Activity value Units Action Type Journal PubMed Id doi Assay Aladdin ID
CYP2C19 Tchem Cytochrome P450 2C19 (29246 活性数据)
活性类型 Relation Activity value Units Action Type Journal PubMed Id doi Assay Aladdin ID
CYP3A4 Tclin Cytochrome P450 3A4 (53859 活性数据)
活性类型 Relation Activity value Units Action Type Journal PubMed Id doi Assay Aladdin ID
MT2 (2907 活性数据)
活性类型 Relation Activity value Units Action Type Journal PubMed Id doi Assay Aladdin ID
KDM4A Tchem Lysine-specific demethylase 4A (52245 活性数据)
活性类型 Relation Activity value Units Action Type Journal PubMed Id doi Assay Aladdin ID

关联靶点(其它种属)

pol Human immunodeficiency virus type 1 integrase (9041 活性数据)
活性类型 Relation Activity value Units Action Type Journal PubMed Id doi Assay Aladdin ID
HD1 Histone deacetylase (38 活性数据)
活性类型 Relation Activity value Units Action Type Journal PubMed Id doi Assay Aladdin ID
Human immunodeficiency virus 1 (70413 活性数据)
活性类型 Relation Activity value Units Action Type Journal PubMed Id doi Assay Aladdin ID

作用机制

作用机制 Action Type target ID Target Name Target Type Target Organism Binding Site Name 参考文献

名称和识别符

PubChem SID 504758717
EC号 205-695-6
分子类型 小分子
IUPAC Name (2S,3S)-2,3-dihydroxybutanedioic acid
INCHI InChI=1S/C4H6O6/c5-1(3(7)8)2(6)4(9)10/h1-2,5-6H,(H,7,8)(H,9,10)/t1-,2-/m0/s1
InChi Key FEWJPZIEWOKRBE-LWMBPPNESA-N
Canonical SMILES C(C(C(=O)O)O)(C(=O)O)O
Isomeric SMILES [C@H]([C@@H](C(=O)O)O)(C(=O)O)O
WGK Germany 3
RTECS WW7875000
PubChem CID 439655
分子量 150.09
Beilstein号 1725145
Reaxy-Rn 1725145

化学和物理性质

密度 1.76
敏感性 对光线敏感
比旋光度 -12.5 ° (C=5, H2O)
闪点(℉) 410°F
闪点(℃) 210℃
熔点 166-170°C
分子量 150.090 g/mol
XLogP3 -1.900
氢键供体数Hydrogen Bond Donor Count 4
氢键受体数Hydrogen Bond Acceptor Count 6
可旋转键计数Rotatable Bond Count 3
精确质量Exact Mass 150.016 Da
单同位素质量Monoisotopic Mass 150.016 Da
拓扑极表面积Topological Polar Surface Area 115.000 Ų
重原子数Heavy Atom Count 10
形式电荷Formal Charge 0
复杂度Complexity 134.000
同位素原子数Isotope Atom Count 0
定义的原子立体中心计数Defined Atom Stereocenter Count 2
未定义的原子立体中心计数Undefined Atom Stereocenter Count 0
定义的键立体中心计数Defined Bond Stereocenter Count 0
未定义的键立体中心计数Undefined Bond Stereocenter Count 0
所有立体化学键的总数The total count of all stereochemical bonds 0
共价键合单元计数Covalently-Bonded Unit Count 1

安全和危险性(GHS)

象形图 GHS05,   GHS07
信号词 Danger
危险声明

H315: 引起皮肤刺激

H319: 引起严重眼睛刺激

H335: 可能引起呼吸道刺激

H318: 造成严重的眼睛损伤

预防措施声明

P261: 避免吸入灰尘/烟雾/气体/雾/蒸汽/喷雾

P305+P351+P338: 如进入眼睛:用水小心冲洗几分钟。如戴隐形眼镜并可方便地取出,取出隐形眼镜。继续冲洗。

P280: 戴防护手套/穿防护服/戴防护眼罩/戴防护面具。

P302+P352: 如皮肤沾染:用水充分清洗。

P321: 特殊处理(请参阅此标签上的...)。

P405: 密闭存放

P501: 将内容物/容器处理到。。。

P264: 处理后要彻底洗手。

P271: 仅在室外或通风良好的地方使用。

P304+P340: 如误吸入:将人转移到空气新鲜处,保持呼吸舒适体位。

P403+P233: 存放在通风良好的地方。保持容器密闭。

P362+P364: 脱掉沾污的衣服,清洗后方可重新使用。

P264+P265: 处理后彻底洗手[和…]。不要触摸眼睛。

P305+P354+P338: 如果进入眼睛:立即用水冲洗几分钟。取下隐形眼镜(如果有的话),并且操作简单。继续冲洗。

P317: 寻求紧急医疗救助。

P337+P317: 如果眼睛刺激持续:寻求医疗帮助。

P332+P317: 如果出现皮肤刺激:请寻求医疗帮助。

P319: 如果你感到不适,请寻求医疗帮助。

WGK Germany 3
RTECS WW7875000
Reaxy-Rn 1725145
Merck Index 9068
个人防护装备 dust mask type N95 (US),Eyeshields,Gloves

技术规格说明书

Specific Rotation [a]20/D(c=20 in H2O) -13--11(°)
Purity(Neutralization titration) 99-101(%)
Appearance(T107140) White Powder or Crystals or Granules or Chunks
Infrared spectrum Conforms to Structure
Solubility in H2O,Colorless,Clear,100 mg/mL, H2O pass

质检证书(CoA,COO,BSE/TSE 和分析图谱)

C of A & Other Certificates(BSE/TSE, COO):
输入批号以搜索分析图谱:

通过匹配包装上的批号来查找并下载产品的 COA,每批产品都进行了严格的验证,您可放心使用!

找到8个结果

批号(Lot Number) 证书类型 日期 货号
L2420847 分析证书 24-07-27 T107140
K2302072 分析证书 23-11-09 T107140
C2201471 分析证书 22-03-04 T107140
E2304269 分析证书 22-03-04 T107140
C2201482 分析证书 22-03-03 T107140
F2215253 分析证书 22-03-03 T107140
F2215254 分析证书 22-03-03 T107140
F2215255 分析证书 22-03-03 T107140

此产品的引用文献

1. Rongxiu Qin, Haiyan Chen, Rusi Wen, Guiqing Li, Zhonglei Meng.  (2023)  Effect of Boric Acid on the Ionization Equilibrium of α-Hydroxy Carboxylic Acids and the Study of Its Applications.  MOLECULES,  28  (12): (4723).  [PMID:37375278] [10.3390/molecules28124723]
2. Ziwei Zheng, Shanshan Qiu, Zhenbo Wei.  (2022)  A Novel Voltammetric Electronic Tongue Based on Nanocomposites Modified Electrodes for the Discrimination of Red Wines from Different Geographical Origins.  Chemosensors,  10  (8): (332).  [10.3390/chemosensors10080332]
3. Hui Peng, Faqiang Wang, Danyang Wang, Shuzhen Cui, Wenbo Hou, Guofu Ma.  (2022)  In Situ Self-Anchored Growth of MnO2 Nanosheet Arrays in Polyaniline-Derived Carbon Nanotubes with Enhanced Stability for Zn–MnO2 Batteries.  ACS Applied Energy Materials,  (3): (3854–3862).  [10.1021/acsaem.2c00360]
4. Xie Qingqiao, Zhuang Yuandi, Ye Gaojun, Wang Tiankuo, Cao Yi, Jiang Lingxiang.  (2021)  Astral hydrogels mimic tissue mechanics by aster-aster interpenetration.  Nature Communications,  12  (1): (1-9).  [PMID:34257316] [10.1038/s41467-021-24663-y]
5. Xie Qingqiao, Chen Xixi, Wu Tianli, Wang Tiankuo, Cao Yi, Granick Steve, Li Yuchao, Jiang Lingxiang.  (2019)  Synthetic asters as elastic and radial skeletons.  Nature Communications,  10  (1): (1-10).  [PMID:31672981] [10.1038/s41467-019-13009-4]
6. Dan-Dan Zhai, Zhen Fang, Hongwei Jin, Ming Hui, Christopher Joseph Kirubaharan, Yang-Yang Yu, Yang-Chun Yong.  (2019)  Vertical alignment of polyaniline nanofibers on electrode surface for high-performance microbial fuel cells.  BIORESOURCE TECHNOLOGY,  288  (121499).  [PMID:31128545] [10.1016/j.biortech.2019.121499]
7. Wanru Wang, Weifeng Xu, Guilin Dai, Panliang Zhang, Kewen Tang.  (2018)  Process optimization of reactive extraction of clorprenaline enantiomers by experiment and simulation.  Chemical Engineering and Processing-Process Intensification,  134  (141).  [10.1016/j.cep.2018.10.021]
8. Lingli Zhang, Peng Fu, Boya Wang, Minying Liu, Qingxiang Zhao, Xinchang Pang, Zhe Cui.  (2018)  Preparation of novel optically active polyamide@silica hybrid core-shell nanoparticles and application for enantioselective crystallization.  REACTIVE & FUNCTIONAL POLYMERS,  131  (326).  [10.1016/j.reactfunctpolym.2018.08.004]
9. Wensheng Tan, Renjun Fu, Hong Ji, Datong Wu, Yueguo Xu, Yong Kong.  (2018)  Comparison of supercapacitive behaviors of polyaniline doped with two low-molecular-weight organic acids: D-tartaric acid and citric acid.  ADVANCES IN POLYMER TECHNOLOGY,  37  (8): (3038-3044).  [10.1002/adv.21974]
10. Lingli Zhang, Chenxi Zhang, Wenjie Zhang, Zhe Cui, Peng Fu, Minying Liu, Xinchang Pang, Qingxiang Zhao.  (2018)  Optical Activity of Homochiral Polyamides in Solution and Solid State: Structural Function for Chiral Induction.  ACS Omega,  (2): (2463–2469).  [PMID:31458541] [10.1021/acsomega.7b01963]
11. Panliang Zhang, Shichuan Wang, Weifeng Xu, Kewen Tang.  (2017)  Modeling Multiple Chemical Equilibrium in Single-Stage Extraction of Atenolol Enantiomers with Tartrate and Boric Acid as Chiral Selector.  JOURNAL OF CHEMICAL AND ENGINEERING DATA,  62  (12): (4344–4355).  [10.1021/acs.jced.7b00698]
12. Shenzhi Lai, Shaotan Tang, Jiaqi Xie, Changqun Cai, Xiaoming Chen, Chunyan Chen.  (2017)  Highly efficient chiral separation of amlodipine enantiomers via triple recognition hollow fiber membrane extraction.  JOURNAL OF CHROMATOGRAPHY A,  1490  (63).  [PMID:28222860] [10.1016/j.chroma.2017.02.018]
13. Chao Ding, Weili Wei, Hanjun Sun, Jinhua Ding, Jinsong Ren, Xiaogang Qu.  (2014)  Reduced graphene oxide supported chiral Ni particles as magnetically reusable and enantioselective catalyst for asymmetric hydrogenation.  CARBON,  79  (615).  [10.1016/j.carbon.2014.08.022]
14. Zhou Long, Jia Jia, Shanling Wang, Lu Kou, Xiandeng Hou, Michael J. Sepaniak.  (2013)  Visual enantioselective probe based on metal organic framework incorporating quantum dots.  MICROCHEMICAL JOURNAL,  110  (764).  [10.1016/j.microc.2013.08.013]

参考文献

1. Rongxiu Qin, Haiyan Chen, Rusi Wen, Guiqing Li, Zhonglei Meng.  (2023)  Effect of Boric Acid on the Ionization Equilibrium of α-Hydroxy Carboxylic Acids and the Study of Its Applications.  MOLECULES,  28  (12): (4723).  [PMID:37375278] [10.3390/molecules28124723]
2. Ziwei Zheng, Shanshan Qiu, Zhenbo Wei.  (2022)  A Novel Voltammetric Electronic Tongue Based on Nanocomposites Modified Electrodes for the Discrimination of Red Wines from Different Geographical Origins.  Chemosensors,  10  (8): (332).  [10.3390/chemosensors10080332]
3. Hui Peng, Faqiang Wang, Danyang Wang, Shuzhen Cui, Wenbo Hou, Guofu Ma.  (2022)  In Situ Self-Anchored Growth of MnO2 Nanosheet Arrays in Polyaniline-Derived Carbon Nanotubes with Enhanced Stability for Zn–MnO2 Batteries.  ACS Applied Energy Materials,  (3): (3854–3862).  [10.1021/acsaem.2c00360]
4. Xie Qingqiao, Zhuang Yuandi, Ye Gaojun, Wang Tiankuo, Cao Yi, Jiang Lingxiang.  (2021)  Astral hydrogels mimic tissue mechanics by aster-aster interpenetration.  Nature Communications,  12  (1): (1-9).  [PMID:34257316] [10.1038/s41467-021-24663-y]
5. Xie Qingqiao, Chen Xixi, Wu Tianli, Wang Tiankuo, Cao Yi, Granick Steve, Li Yuchao, Jiang Lingxiang.  (2019)  Synthetic asters as elastic and radial skeletons.  Nature Communications,  10  (1): (1-10).  [PMID:31672981] [10.1038/s41467-019-13009-4]
6. Dan-Dan Zhai, Zhen Fang, Hongwei Jin, Ming Hui, Christopher Joseph Kirubaharan, Yang-Yang Yu, Yang-Chun Yong.  (2019)  Vertical alignment of polyaniline nanofibers on electrode surface for high-performance microbial fuel cells.  BIORESOURCE TECHNOLOGY,  288  (121499).  [PMID:31128545] [10.1016/j.biortech.2019.121499]
7. Wanru Wang, Weifeng Xu, Guilin Dai, Panliang Zhang, Kewen Tang.  (2018)  Process optimization of reactive extraction of clorprenaline enantiomers by experiment and simulation.  Chemical Engineering and Processing-Process Intensification,  134  (141).  [10.1016/j.cep.2018.10.021]
8. Lingli Zhang, Peng Fu, Boya Wang, Minying Liu, Qingxiang Zhao, Xinchang Pang, Zhe Cui.  (2018)  Preparation of novel optically active polyamide@silica hybrid core-shell nanoparticles and application for enantioselective crystallization.  REACTIVE & FUNCTIONAL POLYMERS,  131  (326).  [10.1016/j.reactfunctpolym.2018.08.004]
9. Wensheng Tan, Renjun Fu, Hong Ji, Datong Wu, Yueguo Xu, Yong Kong.  (2018)  Comparison of supercapacitive behaviors of polyaniline doped with two low-molecular-weight organic acids: D-tartaric acid and citric acid.  ADVANCES IN POLYMER TECHNOLOGY,  37  (8): (3038-3044).  [10.1002/adv.21974]
10. Lingli Zhang, Chenxi Zhang, Wenjie Zhang, Zhe Cui, Peng Fu, Minying Liu, Xinchang Pang, Qingxiang Zhao.  (2018)  Optical Activity of Homochiral Polyamides in Solution and Solid State: Structural Function for Chiral Induction.  ACS Omega,  (2): (2463–2469).  [PMID:31458541] [10.1021/acsomega.7b01963]
11. Panliang Zhang, Shichuan Wang, Weifeng Xu, Kewen Tang.  (2017)  Modeling Multiple Chemical Equilibrium in Single-Stage Extraction of Atenolol Enantiomers with Tartrate and Boric Acid as Chiral Selector.  JOURNAL OF CHEMICAL AND ENGINEERING DATA,  62  (12): (4344–4355).  [10.1021/acs.jced.7b00698]
12. Shenzhi Lai, Shaotan Tang, Jiaqi Xie, Changqun Cai, Xiaoming Chen, Chunyan Chen.  (2017)  Highly efficient chiral separation of amlodipine enantiomers via triple recognition hollow fiber membrane extraction.  JOURNAL OF CHROMATOGRAPHY A,  1490  (63).  [PMID:28222860] [10.1016/j.chroma.2017.02.018]
13. Chao Ding, Weili Wei, Hanjun Sun, Jinhua Ding, Jinsong Ren, Xiaogang Qu.  (2014)  Reduced graphene oxide supported chiral Ni particles as magnetically reusable and enantioselective catalyst for asymmetric hydrogenation.  CARBON,  79  (615).  [10.1016/j.carbon.2014.08.022]
14. Zhou Long, Jia Jia, Shanling Wang, Lu Kou, Xiandeng Hou, Michael J. Sepaniak.  (2013)  Visual enantioselective probe based on metal organic framework incorporating quantum dots.  MICROCHEMICAL JOURNAL,  110  (764).  [10.1016/j.microc.2013.08.013]

溶液计算器