为了获得访问"阿拉丁铁蛋"实时聊天框的流畅支持体验,建议您使用Chrome浏览器或选择360浏览器极速模式(如何切换极速模式?),感谢您选择我们!

KU-55933(ATM激酶抑制剂)

高效,选择性,竞争性ATM激酶抑制剂
规格或纯度: ≥98%
有货

库存信息

关闭

库存信息

关闭

库存信息

关闭
货号 (SKU) 包装规格 是否现货 价格 数量
K126884-5mg
5mg 现货 Stock Image
K126884-25mg
25mg 现货 Stock Image
K126884-100mg
100mg 现货 Stock Image

基本描述

英文别名 587871-26-9|KU-55933|2-Morpholino-6-(thianthren-1-yl)-4H-pyran-4-one|KU55933|ATM Kinase Inhibitor|KU 55933|2-Morpholin-4-yl-6-thianthren-1-yl-pyran-4-one|2-Morpholin-4-yl-6-thianthren-1-ylpyran-4-one|KU-55933 (ATM Kinase Inhibitor)|CHEMBL222102|O549494L5D
规格或纯度 ≥98%
英文名称 KU-55933 (ATM Kinase Inhibitor)
生化机理 KU-55933 is a very potent, specific inhibitor of Ataxia telangiectasia (A-T) mutated (ATM) kinase (IC50 = 13 nM). KU-22933 treatment sensitizes cancer cells to ionizing radiation and cytotoxic drμgs. The compound KU-22933 blocks ATM-mediated phosphorylyation of p53, gH2AX, NBS1, and SMC1.Potent, selective and competitive ATM kinase inhibitor. IC 50 values are 12.9 (ATM), 2000 (DNA-PK), 9300 (mTOR), 16600 (PI3K), >100000 (ATR) and >100000 nM (PI4K). Sensitizes cells to ionizing radiation and chemotherapeutics.
应用 A cell-permeable, potent, selective and ATP-competitive ATM inhibitor
储存温度 -20°C储存
运输条件 超低温冰袋运输
备注 如果有可能,您尽量在使用的当天配置溶液,并在当天使用完它。但是,如果您需要预先配制储备溶液,我们建议您将溶液等份保存在-20°C的密封小瓶中。通常,它们最多可以使用一个月。在使用前和打开样品瓶之前,我们建议您让您的产品在室温下平衡至少1小时。需要更多关于溶解度,用法和处理的建议吗?请访问我们的常见问题(FAQ)页面以获取更多详细信息。
产品介绍

KU-55933是ATM抑制剂,IC50和Ki分别为13和2.2 nM,对DNA-PK,PI3K/PI4K,ATR和mTOR的活性较低。A cell-permeable, potent, selective and ATP-competitive ATM inhibitor

KU-55933 (ATM Kinase Inhibitor) is a potent and specific ATM inhibitor with IC50/Ki of 12.9 nM/2.2 nM in cell-free assays, and is highly selective for ATM as compared to DNA-PK, PI3K/PI4K, ATR and mTOR.
A cell-permeable, potent, selective and ATP-competitive ATM inhibitor

名称和标识符

IUPAC Name 2-morpholin-4-yl-6-thianthren-1-ylpyran-4-one
INCHI InChI=1S/C21H17NO3S2/c23-14-12-16(25-20(13-14)22-8-10-24-11-9-22)15-4-3-7-19-21(15)27-18-6-2-1-5-17(18)26-19/h1-7,12-13H,8-11H2
InChi Key XRKYMMUGXMWDAO-UHFFFAOYSA-N
Canonical SMILES C1COCCN1C2=CC(=O)C=C(O2)C3=C4C(=CC=C3)SC5=CC=CC=C5S4
Isomeric SMILES C1COCCN1C2=CC(=O)C=C(O2)C3=C4C(=CC=C3)SC5=CC=CC=C5S4
WGK Germany 3
PubChem CID 5278396
分子量 395.49

化学和物理性质

溶解性 DMSO 33 mg/mL Water <1 mg/mL Ethanol <1 mg/mL
密度 1.42
折光率 1.71
沸点 628.01° C at 760 mmHg
熔点 229.98°C

安全和危险性(GHS)

WGK Germany 3

质检证书(COA)

质检报告(COA)

输入批号以搜索COA:

相关文档

质检报告COA

请输入批号:


产品问答

产品问答

登录提交问题 Hover me 请先登录再提交问题
您提交该产品问题后,我们会在1-2个工作日内给您答复,您可以登录"我的账号",然后点击"我的产品问答"查看答案

参考文献

1. Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI, Reaper PM, Jackson SP, Curtin NJ, Smith GC.  (2004)  Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM..  Cancer Res,  64  (24):  (9152-9).  [PMID:15604286]
2. Kubota S et al..  (2014)  Activation of the prereplication complex is blocked by mimosine through reactive oxygen species-activated ataxia telangiectasia mutated (ATM) protein without DNA damage..  J Biol Chem,  289  (9):  (5730-46).  [PMID:24421316]
3. Bunch H et al..  (2021)  BRCA1-BARD1 regulates transcription through modulating topoisomerase IIß..  Open Biol,  11  (10):  (210221).  [PMID:34610268]
4. Lee K et al..  (2015)  Cyclo(phenylalanine-proline) induces DNA damage in mammalian cells via reactive oxygen species..  J Cell Mol Med,  19  (12):  (2851-64).  [PMID:26416514]
5. Zeman MK et al..  (2014)  DNA damage-specific deubiquitination regulates Rad18 functions to suppress mutagenesis..  J Cell Biol,  206  (2):  (183-97).  [PMID:25023518]
6. Lv J et al..  (2017)  Feedback regulation of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 via ATM/Chk2 pathway contributes to the resistance of MCF-7 breast cancer cells to cisplatin..  Tumour Biol,  39  (3):  (1010428317694307).  [PMID:28347251]
7. Berger G et al..  (2015)  G2/M cell cycle arrest correlates with primate lentiviral Vpr interaction with the SLX4 complex..  J Virol,  89  ():  (230-40).  [PMID:25320300]
8. Brustel J et al..  (2018)  Large XPF-dependent deletions following misrepair of a DNA double strand break are prevented by the RNA:DNA helicase Senataxin..  Sci Rep,  ():  (3850).  [PMID:29497062]
9. Poletto M et al..  (2017)  Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells..  Nucleic Acids Res,  45  (17):  (10042-10055).  [PMID:28973444]
10. Wakasugi M et al..  (2014)  Nucleotide excision repair-dependent DNA double-strand break formation and ATM signaling activation in mammalian quiescent cells..  J Biol Chem,  289  (41):  (28730-7).  [PMID:25164823]
11. Yamamoto Y et al..  (2018)  Pentose phosphate pathway activation via HSP27 phosphorylation by ATM kinase: A putative endogenous antioxidant defense mechanism during cerebral ischemia-reperfusion..  Brain Res,  1687  ():  (82-94).  [PMID:29510140]
12. Uehara M et al..  (2020)  Pharmacological inhibition of ataxia-telangiectasia mutated exacerbates acute kidney injury by activating p53 signaling in mice..  Sci Rep,  10  ():  (4441).  [PMID:32157166]
13. Hilton BA et al..  (2017)  Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes..  FASEB J,  31  (9):  (3882-3893).  [PMID:28515154]
14. Isobe SY et al..  (2021)  Protein phosphatase 1 acts as a RIF1 effector to suppress DSB resection prior to Shieldin action..  Cell Rep,  36  (2):  (109383).  [PMID:34260925]
15. Chung G et al..  (2015)  REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans..  Genes Dev,  29  (18):  (1969-79).  [PMID:26385965]
16. Sun C et al..  (2020)  Re-equilibration of imbalanced NAD metabolism ameliorates the impact of telomere dysfunction..  EMBO J,  39  (21):  (e103420).  [PMID:32935380]
17. Pancholi NJ & Weitzman MD.  (2018)  Serotype-specific restriction of wild-type adenoviruses by the cellular Mre11-Rad50-Nbs1 complex..  Virology,  518  ():  (221-231).  [PMID:29547809]
18. Sherrard A et al..  (2018)  Streamlined histone-based fluorescence lifetime imaging microscopy (FLIM) for studying chromatin organisation..  Biol Open,  (3):  ().  [PMID:29535103]
19. Huang J et al..  (2020)  Tandem Deubiquitination and Acetylation of SPRTN Promotes DNA-Protein Crosslink Repair and Protects against Aging..  Mol Cell,  79  (5):  (824-835.e5).  [PMID:32649882]
20. Garvin AJ et al..  (2019)  The deSUMOylase SENP2 coordinates homologous recombination and nonhomologous end joining by independent mechanisms..  Genes Dev,  33  (5-6):  (333-347).  [PMID:30796017]
21. Okumoto K et al..  (2020)  The peroxisome counteracts oxidative stresses by suppressing catalase import via Pex14 phosphorylation..  Elife,  ():  ().  [PMID:32831175]
22. Meng Y et al..  (2019)  TRAF6 mediates human DNA2 polyubiquitination and nuclear localization to maintain nuclear genome integrity..  Nucleic Acids Res,  47  (14):  (7564-7579).  [PMID:31216032]
23. Bunch H et al..  (2015)  Transcriptional elongation requires DNA break-induced signalling..  Nat Commun,  ():  (10191).  [PMID:26671524]
24. Kim W et al..  (2019)  ZFP161 regulates replication fork stability and maintenance of genomic stability by recruiting the ATR/ATRIP complex..  Nat Commun,  10  ():  (5304).  [PMID:31757956]