对硝基苯乙酮

  • ≥97%
有货

库存信息

关闭

库存信息

关闭

库存信息

关闭

库存信息

关闭
货号 (SKU) 包装规格 是否现货 价格 数量
N105745-25g
25g 现货 Stock Image
N105745-100g
100g 现货 Stock Image
N105745-500g
500g 现货 Stock Image
N105745-2.5kg
2.5kg 期货 Stock Image
查看相关系列
酮 (787) 非杂环砌块 (8210)

基本描述

别名 对硝基乙酰苯,4-硝基苯乙酮
英文别名 4 inverted exclamation mark -Nitroacetophenone | p-Acetylnitrobenzene | Tox21_200265 | EN300-19195 | NITROACETOPHENONE, P- | AC1233 | 1-(4-Nitrophenyl)ethanone # | 1-Acetyl-4-nitrobenzene | 4nitro acetophenone | 4-nitro acetophenone | F0001-0011 | MLS0021
规格或纯度 ≥97%
英文名称 4′-Nitroacetophenone
运输条件 常规运输
产品介绍

易溶于热乙醇、乙醚和苯,不溶于水。

AI解读

关联靶点(人)

AR Tclin Androgen Receptor (11781 活性数据)
活性类型 Relation Activity value Units Action Type Journal PubMed Id doi Assay Aladdin ID
CXCL8 Tchem Interleukin-8 (642 活性数据)
活性类型 Relation Activity value Units Action Type Journal PubMed Id doi Assay Aladdin ID

关联靶点(其它种属)

Mapk1 MAP kinase ERK2 (650 活性数据)
活性类型 Relation Activity value Units Action Type Journal PubMed Id doi Assay Aladdin ID
Salmonella typhimurium (15756 活性数据)
活性类型 Relation Activity value Units Action Type Journal PubMed Id doi Assay Aladdin ID
Plasmodium falciparum (966862 活性数据)
活性类型 Relation Activity value Units Action Type Journal PubMed Id doi Assay Aladdin ID
Akr1c9 3-alpha-hydroxysteroid dehydrogenase (27 活性数据)
活性类型 Relation Activity value Units Action Type Journal PubMed Id doi Assay Aladdin ID
Nfe2l2 Nuclear factor erythroid 2-related factor 2 (214 活性数据)
活性类型 Relation Activity value Units Action Type Journal PubMed Id doi Assay Aladdin ID

作用机制

作用机制 Action Type target ID Target Name Target Type Target Organism Binding Site Name 参考文献

名称和识别符

PubChem SID 488180459
EC号 MFCD00007355
分子类型 小分子
IUPAC Name 1-(4-nitrophenyl)ethanone
INCHI InChI=1S/C8H7NO3/c1-6(10)7-2-4-8(5-3-7)9(11)12/h2-5H,1H3
InChi Key YQYGPGKTNQNXMH-UHFFFAOYSA-N
Canonical SMILES CC(=O)C1=CC=C(C=C1)[N+](=O)[O-]
Isomeric SMILES CC(=O)C1=CC=C(C=C1)[N+](=O)[O-]
WGK Germany 3
RTECS AM9627000
UN Number 2811
Packing Group I
分子量 165.14
Beilstein号 7288
Reaxy-Rn 607777

化学和物理性质

溶解性 易溶于热乙醇、乙醚和苯,不溶于水。
密度 0.855
沸点 202°C
熔点 79°C
分子量 165.150 g/mol
XLogP3 1.500
氢键供体数Hydrogen Bond Donor Count 0
氢键受体数Hydrogen Bond Acceptor Count 3
可旋转键计数Rotatable Bond Count 1
精确质量Exact Mass 165.043 Da
单同位素质量Monoisotopic Mass 165.043 Da
拓扑极表面积Topological Polar Surface Area 62.900 Ų
重原子数Heavy Atom Count 12
形式电荷Formal Charge 0
复杂度Complexity 189.000
同位素原子数Isotope Atom Count 0
定义的原子立体中心计数Defined Atom Stereocenter Count 0
未定义的原子立体中心计数Undefined Atom Stereocenter Count 0
定义的键立体中心计数Defined Bond Stereocenter Count 0
未定义的键立体中心计数Undefined Bond Stereocenter Count 0
所有立体化学键的总数The total count of all stereochemical bonds 0
共价键合单元计数Covalently-Bonded Unit Count 1

安全和危险性(GHS)

WGK Germany 3
RTECS AM9627000
Reaxy-Rn 607777
Class 6.1
个人防护装备 Eyeshields, Gloves, type N95 (US), type P1 (EN143) respirator filter

技术规格说明书

Melting point 76-80(℃)
Water by Karl Fischer 0-0.5(%)
Free acid (AS 4-Nitrobenzoic acid) 0-0.2(%)
Purity(GC) 97-100(%)
Appearance(N105745) Yellow powder, crystals or flakes and/or chunks
Infrared spectrum Conforms to Structure
Solubility in MeOH,Very faint turbidity pass

质检证书(CoA,COO,BSE/TSE 和分析图谱)

C of A & Other Certificates(BSE/TSE, COO):
输入批号以搜索分析图谱:

通过匹配包装上的批号来查找并下载产品的 COA,每批产品都进行了严格的验证,您可放心使用!

找到6个结果

批号(Lot Number) 证书类型 日期 货号
I2404102 分析证书 24-09-11 N105745
F2411368 分析证书 24-04-25 N105745
D1629070 分析证书 23-12-19 N105745
D2321427 分析证书 22-05-06 N105745
D2321429 分析证书 22-05-06 N105745
G1811028 分析证书 22-05-06 N105745

此产品的引用文献

1. Kai Sun, Yuewen Shao, Cong Ming, Mengjiao Fan, Huailin Fan, Lijun Zhang, Shu Zhang, Yi Wang, Guozhu Chen, Xun Hu.  (2023)  Copper-based catalysts synthesized during hydrogenation.  CHEMICAL ENGINEERING SCIENCE,  276  (118819).  [10.1016/j.ces.2023.118819]
2. Xie Chao, Lin Longfei, Huang Liang, Wang Zixin, Jiang Zhiwei, Zhang Zehui, Han Buxing.  (2021)  Zn-Nx sites on N-doped carbon for aerobic oxidative cleavage and esterification of C(CO)-C bonds.  Nature Communications,  12  (1): (1-12).  [PMID:34376654] [10.1038/s41467-021-25118-0]
3. Hongbo Yu, Chunzheng Wu, Shiwei Wang, Tong Li, Hongfeng Yin.  (2021)  Transition Metal Oxide-Modified Ir Nanoparticles Supported on SBA-15 Silica for Selective Hydrogenation of Substituted Nitroaromatics.  ACS Applied Nano Materials,  (7): (7213–7220).  [10.1021/acsanm.1c01164]
4. Binbin Feng, Qionghao Xu, Xiaoxue Wu, Chunlin Ye, Yanghe Fu, De-Li Chen, Fumin Zhang, Weidong Zhu.  (2021)  MOF-derived N-doped carbon composites embedded with Fe/Fe3C nanoparticles as highly chemoselective and stable catalysts for catalytic transfer hydrogenation of nitroarenes.  APPLIED SURFACE SCIENCE,  557  (149837).  [10.1016/j.apsusc.2021.149837]
5. Shuchang Wu, Guodong Wen, Yang Su, Xiaoli Pan, Hua Yan, Jiangyong Diao, Hongyang Liu.  (2021)  Bottom-Up Approach Derived Iron and Nitrogen Cofunctionalized Carbon as Efficient Renewable Catalyst for Selective Reduction of Nitroarenes.  Journal of Physical Chemistry C,  125  (9): (5127–5135).  [10.1021/acs.jpcc.1c00620]
6. Liyun Huang, Kui Wu, Qian He, Chao Xiong, Tao Gan, Xiaohui He, Hongbing Ji.  (2021)  Quasi-continuous synthesis of iron single atom catalysts via a microcapsule pyrolysis strategy.  AICHE JOURNAL,  67  (6): (e17197).  [10.1002/aic.17197]
7. Hongbo Yu, Weiqiang Tang, Kaijie Li, Shuangliang Zhao, Hongfeng Yin, Shenghu Zhou.  (2019)  Enhanced Catalytic Performance for Hydrogenation of Substituted Nitroaromatics over Ir-Based Bimetallic Nanocatalysts.  ACS Applied Materials & Interfaces,  11  (7): (6958–6969).  [PMID:30674185] [10.1021/acsami.8b19056]
8. Hongbo Yu, Weiqiang Tang, Kaijie Li, Hongfeng Yin, Shuangliang Zhao, Shenghu Zhou.  (2019)  Design of Cu-based intermetallic nanocrystals for enhancing hydrogenation selectivity.  CHEMICAL ENGINEERING SCIENCE,  196  (402).  [10.1016/j.ces.2018.11.024]
9. Dandan Wu, Yanqiao Zhang, Ming Wen, Hao Fang, Qingsheng Wu.  (2017)  Fe3O4/FeNi Embedded Nanostructure and Its Kinetic Law for Selective Catalytic Reduction of p-Nitrophenyl Compounds.  INORGANIC CHEMISTRY,  56  (9): (5152–5157).  [PMID:28426207] [10.1021/acs.inorgchem.7b00304]
10. Miaomiao Liu, Weiqiang Tang, Zhaohui Xie, Hongbo Yu, Hongfeng Yin, Yisheng Xu, Shuangliang Zhao, Shenghu Zhou.  (2017)  Design of Highly Efficient Pt-SnO2 Hydrogenation Nanocatalysts using Pt@Sn Core–Shell Nanoparticles.  ACS Catalysis,  (3): (1583–1591).  [10.1021/acscatal.6b03109]
11. Hao Fang, Ming Wen, Hanxing Chen, Qingsheng Wu, Weiying Li.  (2015)  Graphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro-compounds.  Nanoscale,  (1): (536-542).  [PMID:26646949] [10.1039/C5NR05016B]
12. Lu-Lu Liu, Xin-Guo Zheng, Zhen Sun, Ying-Han Wang.  (2015)  Solubility and liquid crystal vertical alignment of polyimides derived from a new diamine: 4-((4-dodecyloxy)phenyl)-2,6-di((4-amino)phenyl)pyridine.  LIQUID CRYSTALS,  42  (10): (1382-1390).  [10.1080/02678292.2015.1050705]

参考文献

1. H B Michaels.  (1986-07-01)  Oxygen depletion in irradiated aqueous solutions containing electron affinic hypoxic cell radiosensitizers..  International journal of radiation oncology, biology, physics,  12  ((7)): (1055-1058).  [PMID:3744926]
2. A M Rauth,R A McClelland,H B Michaels,R Battistella.  (1984-08-01)  The oxygen dependence of the reduction of nitroimidazoles in a radiolytic model system..  International journal of radiation oncology, biology, physics,  10  ((8)): (1323-1326).  [PMID:6236187]
3. M V Lafleur,H Loman.  (1982-03-01)  Influence of anoxic sensitizers on the radiation damage in biologically active DNA in aqueous solution..  International journal of radiation biology and related studies in physics, chemistry, and medicine,  41  ((3)): (295-302).  [PMID:6279534]
4. M Abe,M Takahashi,K Ono,M Hiraoka.  (1982-06-01)  [Cancer and radiotherapy. (4). Hypoxic cell sensitizers and hyperthermia combined with radiation in cancer treatment]..  Iyo denshi to seitai kogaku. Japanese journal of medical electronics and biological engineering,  20  ((3)): (203-209).  [PMID:6759728]
5. G J Fisher,B M Sutherland,J C Sutherland.  (1983-05-01)  Action spectra for ultraviolet photosensitized killing of mammalian cells by misonidazole and para-nitroacetophenone..  Radiation research,  94  ((2)): (231-238).  [PMID:6856772]
6. K Tatsumi,A Inoue,H Yoshimura.  (1981-02-01)  Mode of reactions between xanthine oxidase and aromatic nitro compounds..  Journal of pharmacobio-dynamics,  ((2)): (101-108).  [PMID:6895090]
7. Y G Smeyers,A De Bueren,R Alcala,M V Alvarez.  (1981-06-01)  Theoretical approach for radiosensitizers. Correlation between calculated electroaffinity and sensitization factors of nitro-compounds..  International journal of radiation biology and related studies in physics, chemistry, and medicine,  39  ((6)): (649-653).  [PMID:6972930]
8. B C Millar,E M Fielden,T C Jenkins.  (1981-11-01)  The effect of combinations of nitroaromatic and nitroxyl radiosensitizers on the radiation survival response of Chinese hamster cells, V.79-753B, in vitro..  Radiation research,  88  ((2)): (369-376).  [PMID:7302142]
9. C M Krishna,A K Roy.  (1993-02-01)  Study of photodynamic reactions of p-nitroacetophenone using ESR and optical techniques..  Indian journal of biochemistry & biophysics,  30  ((1)): (7-9).  [PMID:8389727]
10. N Iwata,N Inazu,S Hara,T Yanase,S Kano,T Endo,F Kuriiwa,Y Sato,T Satoh.  (1993-04-22)  Interindividual variability of carbonyl reductase levels in human livers..  Biochemical pharmacology,  45  ((8)): (1711-1714).  [PMID:8484808]
11. J M Wong,W Kalow,D Kadar,Y Takamatsu,T Inaba.  (1993-04-01)  Carbonyl (phenone) reductase in human liver: inter-individual variability..  Pharmacogenetics,  ((2)): (110-115).  [PMID:8518835]
12. E M Fielden,D Ewing,P B Roberts.  (1974-06-01)  Additive effects in the radiosensitization of B. megaterium spores by p-nitroacetophenone and norpseudopelletierine-N-oxyl..  Radiation research,  58  ((3)): (489-497).  [PMID:10876639]
13. Wing-Yin Tsang,John P Richard.  (2009-10-01)  Structure-reactivity effects on primary deuterium isotope effects on protonation of ring-substituted alpha-methoxystyrenes..  Journal of the American Chemical Society,  131  ((39)): (13952-13962).  [PMID:19788330]
14. Amy Christiansen,Alexa Peterson,Scott C Anderson,Riley Lass,Maja Johnson,Amanda M Nienow.  (2015-12-01)  Analysis of the Photodegradation of the Imidazolinone Herbicides Imazamox, Imazapic, Imazaquin, and Imazamethabenz-methyl in Aqueous Solution..  Journal of agricultural and food chemistry,  63  ((50)): (10768-10777).  [PMID:26616105]
15. Reid P Milstead,Keeton T Nance,Kulananalu S Tarnas,Kira E Egelhofer,David R Griffith.  (2018-09-14)  Photochemical degradation of halogenated estrogens under natural solar irradiance..  Environmental science. Processes & impacts,  20  ((10)): (1350-1360).  [PMID:30211921]
16. Priya I Hora,William A Arnold.  (2020-05-15)  Photochemical fate of quaternary ammonium compounds in river water..  Environmental science. Processes & impacts,  22  ((6)): (1368-1381).  [PMID:32406464]
17. P J Rao,E Bothe,D Schulte-Frohlinde.  (1992-05-01)  Reaction of dithiothreitol and para-nitroacetophenone with different radical precursors of .OH radical-induced strand break formation of single-stranded DNA in anoxic aqueous solution..  International journal of radiation biology,  61  ((5)): (577-591).  [PMID:1349622]
18. R F Anderson,K B Patel.  (1983-03-01)  Metabolic potentiation of the radiosensitization of hypoxic bacterial cells afforded by nitroaromatic compounds..  Radiation research,  93  ((3)): (516-524).  [PMID:6344127]
19. K Washino,W Schnabel.  (1982-03-01)  Radiation-induced molecular size changes in DNA in the presence of p-nitroacetophenone. Pulse radiolysis in conjunction with light-scattering measurements..  International journal of radiation biology and related studies in physics, chemistry, and medicine,  41  ((3)): (271-282).  [PMID:6978317]
20. C T Aravindakumar,H Mohan,M Mudaliar,B S Rao,J P Mittal,M N Schuchmann,C Von Sonntag.  (1994-10-01)  Addition of e-aq and H atoms to hypoxanthine and inosine and the reactions of alpha-hydroxyalkyl radicals with purines. A pulse radiolysis and product analysis study..  International journal of radiation biology,  66  ((4)): (351-365).  [PMID:7930837]
21. N Cénas,K Ollinger.  (1994-11-15)  Redox conversions of methemoglobin during redox cycling of quinones and aromatic nitrocompounds..  Archives of biochemistry and biophysics,  315  ((1)): (170-176).  [PMID:7979395]
22. O A Barski,K Watanabe.  (1993-04-05)  Kinetic mechanism of ketoreductase activity of prostaglandin F synthase from bovine lung..  FEBS letters,  320  ((2)): (107-110).  [PMID:8458424]
23. D A Agnew,L D Skarsgard.  (1974-02-01)  Chemical radiosensitization of anoxic mammalian cells: effect of cell concentration..  Radiation research,  57  ((2)): (246-259).  [PMID:10874940]
24. D Ewing,E M Fielden,P B Roberts.  (1974-06-01)  Modification of radiation sensitivity of Bacillus megaterium spores by N2O and p-nitroacetophenone..  Radiation research,  58  ((3)): (481-488).  [PMID:10876638]
25. Grant C Wallace,Michael Sander,Yu-Ping Chin,William A Arnold.  (2017-05-04)  Quantifying the electron donating capacities of sulfide and dissolved organic matter in sediment pore waters of wetlands..  Environmental science. Processes & impacts,  19  ((5)): (758-767).  [PMID:28466914]
26. Lise Schoonen,Kayleigh S van Esterik,Chunqiu Zhang,Rein V Ulijn,Roeland J M Nolte,Jan C M van Hest.  (2017-11-09)  Alternative application of an affinity purification tag: hexahistidines in ester hydrolysis..  Scientific reports,  ((1)): (14772-14772).  [PMID:29116178]
27. Katryn L Williams,Richie Kaur,Alexander S McFall,Jacob Kalbfleisch,Joshua J Gladfelder,David B Ball,Cort Anastasio,Ronald S Tjeerdema.  (2018-05-15)  Aqueous Photolysis of Benzobicyclon Hydrolysate..  Journal of agricultural and food chemistry,  66  ((22)): (5462-5472).  [PMID:29754487]
28. Kai Sun, Yuewen Shao, Cong Ming, Mengjiao Fan, Huailin Fan, Lijun Zhang, Shu Zhang, Yi Wang, Guozhu Chen, Xun Hu.  (2023)  Copper-based catalysts synthesized during hydrogenation.  CHEMICAL ENGINEERING SCIENCE,  276  (118819).  [10.1016/j.ces.2023.118819]
29. Xie Chao, Lin Longfei, Huang Liang, Wang Zixin, Jiang Zhiwei, Zhang Zehui, Han Buxing.  (2021)  Zn-Nx sites on N-doped carbon for aerobic oxidative cleavage and esterification of C(CO)-C bonds.  Nature Communications,  12  (1): (1-12).  [PMID:34376654] [10.1038/s41467-021-25118-0]
30. Hongbo Yu, Chunzheng Wu, Shiwei Wang, Tong Li, Hongfeng Yin.  (2021)  Transition Metal Oxide-Modified Ir Nanoparticles Supported on SBA-15 Silica for Selective Hydrogenation of Substituted Nitroaromatics.  ACS Applied Nano Materials,  (7): (7213–7220).  [10.1021/acsanm.1c01164]
31. Binbin Feng, Qionghao Xu, Xiaoxue Wu, Chunlin Ye, Yanghe Fu, De-Li Chen, Fumin Zhang, Weidong Zhu.  (2021)  MOF-derived N-doped carbon composites embedded with Fe/Fe3C nanoparticles as highly chemoselective and stable catalysts for catalytic transfer hydrogenation of nitroarenes.  APPLIED SURFACE SCIENCE,  557  (149837).  [10.1016/j.apsusc.2021.149837]
32. Shuchang Wu, Guodong Wen, Yang Su, Xiaoli Pan, Hua Yan, Jiangyong Diao, Hongyang Liu.  (2021)  Bottom-Up Approach Derived Iron and Nitrogen Cofunctionalized Carbon as Efficient Renewable Catalyst for Selective Reduction of Nitroarenes.  Journal of Physical Chemistry C,  125  (9): (5127–5135).  [10.1021/acs.jpcc.1c00620]
33. Liyun Huang, Kui Wu, Qian He, Chao Xiong, Tao Gan, Xiaohui He, Hongbing Ji.  (2021)  Quasi-continuous synthesis of iron single atom catalysts via a microcapsule pyrolysis strategy.  AICHE JOURNAL,  67  (6): (e17197).  [10.1002/aic.17197]
34. Hongbo Yu, Weiqiang Tang, Kaijie Li, Shuangliang Zhao, Hongfeng Yin, Shenghu Zhou.  (2019)  Enhanced Catalytic Performance for Hydrogenation of Substituted Nitroaromatics over Ir-Based Bimetallic Nanocatalysts.  ACS Applied Materials & Interfaces,  11  (7): (6958–6969).  [PMID:30674185] [10.1021/acsami.8b19056]
35. Hongbo Yu, Weiqiang Tang, Kaijie Li, Hongfeng Yin, Shuangliang Zhao, Shenghu Zhou.  (2019)  Design of Cu-based intermetallic nanocrystals for enhancing hydrogenation selectivity.  CHEMICAL ENGINEERING SCIENCE,  196  (402).  [10.1016/j.ces.2018.11.024]
36. Dandan Wu, Yanqiao Zhang, Ming Wen, Hao Fang, Qingsheng Wu.  (2017)  Fe3O4/FeNi Embedded Nanostructure and Its Kinetic Law for Selective Catalytic Reduction of p-Nitrophenyl Compounds.  INORGANIC CHEMISTRY,  56  (9): (5152–5157).  [PMID:28426207] [10.1021/acs.inorgchem.7b00304]
37. Miaomiao Liu, Weiqiang Tang, Zhaohui Xie, Hongbo Yu, Hongfeng Yin, Yisheng Xu, Shuangliang Zhao, Shenghu Zhou.  (2017)  Design of Highly Efficient Pt-SnO2 Hydrogenation Nanocatalysts using Pt@Sn Core–Shell Nanoparticles.  ACS Catalysis,  (3): (1583–1591).  [10.1021/acscatal.6b03109]
38. Hao Fang, Ming Wen, Hanxing Chen, Qingsheng Wu, Weiying Li.  (2015)  Graphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro-compounds.  Nanoscale,  (1): (536-542).  [PMID:26646949] [10.1039/C5NR05016B]
39. Lu-Lu Liu, Xin-Guo Zheng, Zhen Sun, Ying-Han Wang.  (2015)  Solubility and liquid crystal vertical alignment of polyimides derived from a new diamine: 4-((4-dodecyloxy)phenyl)-2,6-di((4-amino)phenyl)pyridine.  LIQUID CRYSTALS,  42  (10): (1382-1390).  [10.1080/02678292.2015.1050705]

溶液计算器