计算溶液所需的质量、体积或浓度。
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
货号 (SKU) | 包装规格 | 是否现货 | 价格 | 数量 |
---|---|---|---|---|
H118576-100mg |
100mg |
现货 ![]() |
| |
H118576-500mg |
500mg |
现货 ![]() |
|
别名 | 对羟基苯乙醇, 4-羟基苯乙醇 |
---|---|
英文别名 | 4-(2-Hydroxyethyl)phenol | 4-Hydroxyphenylethanol | 4-Hydroxybenzeneethanol | 4-Hydroxyphenethyl alcohol | 2-(4-Hydroxyphenyl)ethyl Alcohol | p-Tyrosol | Tyrosol | p-Hydroxyphenethyl alcohol |
规格或纯度 | 色谱标准品, ≥99.5%(GC) |
英文名称 | 2-(4-Hydroxyphenyl)ethanol |
生化机理 | 橄榄油中的抗氧化剂。 |
储存温度 | 充氩 |
运输条件 | 常规运输 |
产品介绍 |
2-(4-羟基苯基)乙醇是一种存在于橄榄中的酚类化合物,具有广泛的健康益处和药理特性,例如抗炎、抗病毒、抗肿瘤和心脏保护活性。 应用: 2-(4-Hydroxyphenyl)ethanol is a phenolic compound present in olives, which can exhibit a wide range of health benefits and pharmacological properties like anti-inflammatory, antiviral, anti-tumor and cardioprotection activity. Application: 2-(4-Hydroxyphenyl)ethanol may be used as an analytical standard for the determination of the analyte in culture supernatant of Candida albicans, liquid Czapek cultures from endophytic fungi, human biological samples, and wine samples by various chromatography techniques. |
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
作用机制 | Action Type | target ID | Target Name | Target Type | Target Organism | Binding Site Name | 参考文献 |
---|
EC号 | 207-930-8 |
---|---|
分子类型 | 小分子 |
IUPAC Name | 4-(2-hydroxyethyl)phenol |
INCHI | InChI=1S/C8H10O2/c9-6-5-7-1-3-8(10)4-2-7/h1-4,9-10H,5-6H2 |
InChi Key | YCCILVSKPBXVIP-UHFFFAOYSA-N |
Canonical SMILES | C1=CC(=CC=C1CCO)O |
Isomeric SMILES | C1=CC(=CC=C1CCO)O |
WGK Germany | 3 |
PubChem CID | 10393 |
分子量 | 138.16 |
Beilstein号 | 1859884 |
Reaxy-Rn | 1859884 |
密度 | 1.168 |
---|---|
沸点 | 310°C |
熔点 | 90-95°C |
分子量 | 138.160 g/mol |
XLogP3 | 0.400 |
氢键供体数Hydrogen Bond Donor Count | 2 |
氢键受体数Hydrogen Bond Acceptor Count | 2 |
可旋转键计数Rotatable Bond Count | 2 |
精确质量Exact Mass | 138.068 Da |
单同位素质量Monoisotopic Mass | 138.068 Da |
拓扑极表面积Topological Polar Surface Area | 40.500 Ų |
重原子数Heavy Atom Count | 10 |
形式电荷Formal Charge | 0 |
复杂度Complexity | 85.300 |
同位素原子数Isotope Atom Count | 0 |
定义的原子立体中心计数Defined Atom Stereocenter Count | 0 |
未定义的原子立体中心计数Undefined Atom Stereocenter Count | 0 |
定义的键立体中心计数Defined Bond Stereocenter Count | 0 |
未定义的键立体中心计数Undefined Bond Stereocenter Count | 0 |
所有立体化学键的总数The total count of all stereochemical bonds | 0 |
共价键合单元计数Covalently-Bonded Unit Count | 1 |
象形图 | GHS07 |
---|---|
危险声明 |
H315: 引起皮肤刺激 H319: 引起严重眼睛刺激 H335: 可能引起呼吸道刺激 |
预防措施声明 |
P261: 避免吸入灰尘/烟雾/气体/雾/蒸汽/喷雾 P305+P351+P338: 如进入眼睛:用水小心冲洗几分钟。如戴隐形眼镜并可方便地取出,取出隐形眼镜。继续冲洗。 |
WGK Germany | 3 |
Reaxy-Rn | 1859884 |
个人防护装备 | dust mask type N95 (US),Eyeshields,Gloves |
¥245.90
¥30.90
1. Chenchen Zhao, Yu Sha, Wei Zhuang, Yuan Rao, Jihang Zhang, Jinglan Wu, Tao Shen, Zhuotao Tan, Chenjie Zhu, Hongman Zhang, Hanjie Ying. (2023) Production of hydroxytyrosol from tyrosol via controllable oxidation with immobilized tyrosinase: A comparative study. PROCESS BIOCHEMISTRY, 131 (144). [10.1016/j.procbio.2023.06.017] |
2. Tong Sun, Yan Liu, Ke Wang, Feiyu Duan, Lili Lu. (2023) Biotransformation of Tyrosol into a Novel Valuable α-Galactoside with Increased Solubility and Improved Anti-inflammatory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 71 (25): (9836–9846). [PMID:37319317] [10.1021/acs.jafc.3c02529] |
3. Jue Chen, Qibin Cheng, Qianqian Ma, Yuqi Wu, Liwei Zhang. (2023) Salidroside synthesis via glycosylation by β-D-glucosidase immobilized on chitosan microspheres in deep eutectic solvents. BIOCATALYSIS AND BIOTRANSFORMATION, [10.1080/10242422.2023.2178308] |
4. Fengxia Tang, Chuan Li, Xiaoran Yang, Jiandu Lei, Hongxia Chen, Changwei Zhang, Chengzhang Wang. (2023) Effect of Variety and Maturity Index on the Physicochemical Parameters Related to Virgin Olive Oil from Wudu (China). Foods, 12 (1): (7). [PMID:36613224] [10.3390/foods12010007] |
5. Jinbin Liu, Kaipeng Wang, Mian Wang, Huaxiang Deng, Xiaodong Chen, Yueling Shang, Xiaochen Liu, Xiaohong Yu. (2022) Efficient whole cell biotransformation of tyrosol from L-tyrosine by engineered Escherichia coli. ENZYME AND MICROBIAL TECHNOLOGY, 160 (110100). [PMID:35872508] [10.1016/j.enzmictec.2022.110100] |
6. Li Jiang, Yanling Xiong, Yu Tu, Wentong Zhang, Qiyun Zhang, Peng Nie, Xiaojun Yan, Hongning Liu, Ronghua Liu, Guoliang Xu. (2022) Elucidation of the Transport Mechanism of Puerarin and Gastrodin and Their Interaction on the Absorption in a Caco-2 Cell Monolayer Model. MOLECULES, 27 (4): (1230). [PMID:35209020] [10.3390/molecules27041230] |
7. Xu Yu, Li Yu, Fei Ma, Peiwu Li. (2021) Quantification of phenolic compounds in vegetable oils by mixed-mode solid-phase extraction isotope chemical labeling coupled with UHPLC-MS/MS. FOOD CHEMISTRY, 334 (127572). [PMID:32721834] [10.1016/j.foodchem.2020.127572] |
8. Wenjing Li, Congyong Sun, Wenwen Deng, Yingkun Liu, Michael Adu-Frimpong, Jiangnan Yu, Ximing Xu. (2019) Pharmacokinetic of gastrodigenin rhamnopyranoside from Moringa seeds in rodents. FITOTERAPIA, 138 (104348). [PMID:31470062] [10.1016/j.fitote.2019.104348] |
9. Jiahong Han, Min Dai, Yan Zhao, Enbo Cai, Lianxue Zhang, Xiaohuan Jia, Nian Sun, Xuan Fei, Hui Shu. (2020) Compatibility effects of ginseng and Ligustrum lucidum Ait herb pair on hematopoietic recovery in mice with cyclophosphamide-induced myelosuppression and its material basis. Journal of Ginseng Research, 44 (291). [PMID:32148411] [10.1016/j.jgr.2019.01.001] |
10. Zhihua Liao, Fei Qiu, Junlan Zeng, Li Gu, Bangjun Wang, Xiaozhong Lan, Min Chen. (2018) A Novel UDP-Glycosyltransferase of Rhodiola crenulata Converts Tyrosol to Specifically Produce Icariside D2. Biomed Research International, 2018 (7970590). [PMID:30027099] [10.1155/2018/7970590] |
11. Xianglai Li, Zhenya Chen, Yifei Wu, Yajun Yan, Xinxiao Sun, Qipeng Yuan. (2018) Establishing an Artificial Pathway for Efficient Biosynthesis of Hydroxytyrosol. ACS Synthetic Biology, 7 (2): (647–654). [PMID:29281883] [10.1021/acssynbio.7b00385] |
12. Zhihong Wang, Chengzhang Wang, Changwei Zhang, Wenjun Li. (2017) Ultrasound-assisted enzyme catalyzed hydrolysis of olive waste and recovery of antioxidant phenolic compounds. Innovative Food Science & Emerging Technologies, 44 (224). [10.1016/j.ifset.2017.02.013] |
13. Zhuang Yibin, Jiang Jingjie, Bi Huiping, Yin Hua, Liu Shaowei, Liu Tao. (2016) Synthesis of rosmarinic acid analogues in Escherichia coli. BIOTECHNOLOGY LETTERS, 38 (4): (619-627). [PMID:26667131] [10.1007/s10529-015-2011-1] |
14. Yanhong BI, Zhaoyu WANG, Yanyong MAO, Shangyong ZHENG, Haijiang ZHANG, Hao SHI. (2012) Ionic Liquid Effects on the Activity of β-Glycosidase for the Synthesis of Salidroside in Co-solvent Systems. CHINESE JOURNAL OF CATALYSIS, 33 (1161). [10.1016/S1872-2067(11)60395-1] |
1. Chenchen Zhao, Yu Sha, Wei Zhuang, Yuan Rao, Jihang Zhang, Jinglan Wu, Tao Shen, Zhuotao Tan, Chenjie Zhu, Hongman Zhang, Hanjie Ying. (2023) Production of hydroxytyrosol from tyrosol via controllable oxidation with immobilized tyrosinase: A comparative study. PROCESS BIOCHEMISTRY, 131 (144). [10.1016/j.procbio.2023.06.017] |
2. Tong Sun, Yan Liu, Ke Wang, Feiyu Duan, Lili Lu. (2023) Biotransformation of Tyrosol into a Novel Valuable α-Galactoside with Increased Solubility and Improved Anti-inflammatory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 71 (25): (9836–9846). [PMID:37319317] [10.1021/acs.jafc.3c02529] |
3. Jue Chen, Qibin Cheng, Qianqian Ma, Yuqi Wu, Liwei Zhang. (2023) Salidroside synthesis via glycosylation by β-D-glucosidase immobilized on chitosan microspheres in deep eutectic solvents. BIOCATALYSIS AND BIOTRANSFORMATION, [10.1080/10242422.2023.2178308] |
4. Fengxia Tang, Chuan Li, Xiaoran Yang, Jiandu Lei, Hongxia Chen, Changwei Zhang, Chengzhang Wang. (2023) Effect of Variety and Maturity Index on the Physicochemical Parameters Related to Virgin Olive Oil from Wudu (China). Foods, 12 (1): (7). [PMID:36613224] [10.3390/foods12010007] |
5. Jinbin Liu, Kaipeng Wang, Mian Wang, Huaxiang Deng, Xiaodong Chen, Yueling Shang, Xiaochen Liu, Xiaohong Yu. (2022) Efficient whole cell biotransformation of tyrosol from L-tyrosine by engineered Escherichia coli. ENZYME AND MICROBIAL TECHNOLOGY, 160 (110100). [PMID:35872508] [10.1016/j.enzmictec.2022.110100] |
6. Li Jiang, Yanling Xiong, Yu Tu, Wentong Zhang, Qiyun Zhang, Peng Nie, Xiaojun Yan, Hongning Liu, Ronghua Liu, Guoliang Xu. (2022) Elucidation of the Transport Mechanism of Puerarin and Gastrodin and Their Interaction on the Absorption in a Caco-2 Cell Monolayer Model. MOLECULES, 27 (4): (1230). [PMID:35209020] [10.3390/molecules27041230] |
7. Xu Yu, Li Yu, Fei Ma, Peiwu Li. (2021) Quantification of phenolic compounds in vegetable oils by mixed-mode solid-phase extraction isotope chemical labeling coupled with UHPLC-MS/MS. FOOD CHEMISTRY, 334 (127572). [PMID:32721834] [10.1016/j.foodchem.2020.127572] |
8. Wenjing Li, Congyong Sun, Wenwen Deng, Yingkun Liu, Michael Adu-Frimpong, Jiangnan Yu, Ximing Xu. (2019) Pharmacokinetic of gastrodigenin rhamnopyranoside from Moringa seeds in rodents. FITOTERAPIA, 138 (104348). [PMID:31470062] [10.1016/j.fitote.2019.104348] |
9. Jiahong Han, Min Dai, Yan Zhao, Enbo Cai, Lianxue Zhang, Xiaohuan Jia, Nian Sun, Xuan Fei, Hui Shu. (2020) Compatibility effects of ginseng and Ligustrum lucidum Ait herb pair on hematopoietic recovery in mice with cyclophosphamide-induced myelosuppression and its material basis. Journal of Ginseng Research, 44 (291). [PMID:32148411] [10.1016/j.jgr.2019.01.001] |
10. Zhihua Liao, Fei Qiu, Junlan Zeng, Li Gu, Bangjun Wang, Xiaozhong Lan, Min Chen. (2018) A Novel UDP-Glycosyltransferase of Rhodiola crenulata Converts Tyrosol to Specifically Produce Icariside D2. Biomed Research International, 2018 (7970590). [PMID:30027099] [10.1155/2018/7970590] |
11. Xianglai Li, Zhenya Chen, Yifei Wu, Yajun Yan, Xinxiao Sun, Qipeng Yuan. (2018) Establishing an Artificial Pathway for Efficient Biosynthesis of Hydroxytyrosol. ACS Synthetic Biology, 7 (2): (647–654). [PMID:29281883] [10.1021/acssynbio.7b00385] |
12. Zhihong Wang, Chengzhang Wang, Changwei Zhang, Wenjun Li. (2017) Ultrasound-assisted enzyme catalyzed hydrolysis of olive waste and recovery of antioxidant phenolic compounds. Innovative Food Science & Emerging Technologies, 44 (224). [10.1016/j.ifset.2017.02.013] |
13. Zhuang Yibin, Jiang Jingjie, Bi Huiping, Yin Hua, Liu Shaowei, Liu Tao. (2016) Synthesis of rosmarinic acid analogues in Escherichia coli. BIOTECHNOLOGY LETTERS, 38 (4): (619-627). [PMID:26667131] [10.1007/s10529-015-2011-1] |
14. Yanhong BI, Zhaoyu WANG, Yanyong MAO, Shangyong ZHENG, Haijiang ZHANG, Hao SHI. (2012) Ionic Liquid Effects on the Activity of β-Glycosidase for the Synthesis of Salidroside in Co-solvent Systems. CHINESE JOURNAL OF CATALYSIS, 33 (1161). [10.1016/S1872-2067(11)60395-1] |